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ABSTRACT  

A fundamental open question for oracles in blockchain environments is a determination of the amount of 

trust to be placed in the oracle. Oracles serve as intermediaries between a trusted blockchain 

environment and the untrusted external environment from where the oracles fetch data. As such, it is 

important to understand the uncertainty introduced by the oracle in the trusted blockchain environment 

and the implications of this uncertainty on blockchain performance. This paper develops a model for 

commoditization of trust. Our model provides for dynamic trust environments that incorporates oracle 

selfishness. The work also considers the equilibrium behavior for the demand and supply for trust and 

introduces elastic incentives for increasing the trust. These results are used to determine optimum size of 

the network that can be served by an oracle with varying degrees of selfishness. Key consequences and 

challenges of incorporating oracles in trusted distributed ledger environments are presented. 
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INTRODUCTION  

Oracles in blockchain (Wang et al., 2019) function by serving as a bridge between the trusted world of 

blockchain and the untrusted world outside the blockchain. Although distributed ledger technologies are 

able to leverage their trust-free architecture to securely process transactions, a major roadblock to their 

widespread usage is the lack of mechanisms to securely verify and incorporate data that exists outside the 

blockchain. The inclusion of an oracle helps to bridge this gap between the blockchain and data sources 

around it. By fetching data from an external source, oracles help to trigger smart contracts that link 

together the trusted blockchain environment and the untrusted external data source (Wohrer & Zdun, 

2018). For example, in a hedging model, nodes in a blockchain (trusted environment) might be dependent 

on weather data from an external website (untrusted environment) in order to predict future prices for an 

agricultural commodity. This information cannot be verified using the blockchain’s inbuilt architecture 

for distributed consensus. As a trusted entity, the oracle fetches this information and supplies it to the 

nodes, thereby triggering a smart contract.  



The implicit assumption in existing literature about blockchain oracles is that of an altruistic oracle. This 

assumption of an altruistic oracle provides for a high degree of trust placed by the blockchain nodes in the 

oracle’s services. However, this assumption of an altruistic oracle may be challenged by factors such as 

computational complexity of the oracle’s tasks and its impact on oracle performance. An oracle that is 

required to perform computationally intensive tasks to retrieve data from multiple untrusted 

environments, aggregate and process it for the blockchain is limited by its own computational capacity, 

the size of the blockchain network that it serves, the quantity of such requests and inter-oracle 

communication and computation responsibilities. Thus, oracles that are subject to a high volume of 

computational processing may suffer from degradation in performance in terms of latency, throughput or 

data accuracy. Additionally, since oracles serve as intermediaries between trusted and untrusted 

environments, they serve to function as a unique point of failure in the trust model espoused by 

blockchain environments. An oracle that is manipulated by malware can compromise the integrity of the 

smart contracts and jeopardize the applications involving such blockchain environments. Such outcomes 

can then impact the level of trust placed in the oracle by the blockchain and revert the blockchain back to 

the original state, where the blockchain only trusts data in the ledger and is thus unable to function in 

hybrid environments that require smart contracts.  

Our work studies trust in the institution of the oracle. Specifically, our work seeks to answer the question: 

How trustworthy is the oracle, and can we use peer evaluations of the oracle’s trustworthiness to assess 

trust placed by a node in the oracle? To do this, we commoditize trust as a tradeable unit with distinct 

supply and demand functions. Oracles may demonstrate selfish or fair behavior, where selfish behavior 

behooves the oracle to conserve its own resources and offer subpar service to the nodes. Similarly, a fair 

oracle is able to serve the requests of the nodes, even at the expense of consumption of its own resources. 

One reason for an oracle to demonstrate selfish behavior is the amount of work requested of the oracle. 

The oracle’s selfishness is dictated by the number of requests it serves. The role of the oracle’s selfishness 

sets the tone for the number of nodes it can serve. We explore how incentives added to the nodes’ trust 

valuations can influence the number of nodes that can be served by selfish (fair) oracles. 



In our model, each blockchain of nodes demands a certain quantity of trust from the oracle, which is 

quantified by the demand function. The amount of trust demanded from the oracle by the nodes in the 

blockchain is based on two components, the collective trust placed by peer nodes and the selfishness of 

the oracle. To do this, first, we borrow upon sociological constructs for trust in societies to formulate a 

mathematical framework for collective trust. Specifically, we use the definition in Lewis & Weigert 

(1985) that collective trust in an entity is not just a personal assessment, but it depends on the trust placed 

by peers in that entity. This sociological conceptualization of trust is extracted largely from the works of 

Luhman (1979), Barber (1980), Parsons (1963) and Simmel (1900). Luhmann emphasizes that trust leads 

to a reduction of complexity since individuals can trust their peers to make informed decisions that lessen 

the amount of risk. Luhmann also states that familiarity is a precondition of trust as well as distrust, as 

individuals learn and devise strategies for risk-mitigation from the actions and outcomes of their peers. In 

related work by Simmel (1900), the author environments with perfect information do not impose the need 

for trust, since individuals would have perfect information about events and outcomes and would know 

the appropriate strategies to land those outcomes. However, in imperfect environments, trust provides a 

valuable intermediary construct with which to assess the impact of certain actions and outcomes in the 

peer environment. Work in Barber (1980) extends this formulation to state that trust implies a “confident 

expectation” on behalf of the individual that a certain action will result in a less risky outcome. Parsons 

(1963) goes on to show how trust holds together societies, noting that the lack of trust can erode public 

confidence and leads to the disintegration of societies.  

Our model for trust work as follows. In a network with four nodes 𝐴, 𝐵, 𝐶 and 𝐷  that is asked to trust an 

entity 𝑆, node 𝐴 might place a level of trust in 𝑆 that may or may not reflect how its peers (𝐵, 𝐶, and 𝐷) 

assess 𝑆. In other words, “I trust because they (do not) trust”. Additionally, we allow customization of the 

level of trust placed by every node in the oracle. For example, if nodes 𝐵, 𝐶, and 𝐷 together place 𝑥 units 

of trust in the oracle, then node 𝐴 has the option to fully or partially incorporate the collective trust of its 

peers in its own calculation for the amount of trust it will place in the oracle. Thus, we assume that the 

collective trust reflects network dynamics of trust and allows for highly scalable trust-enabled 



transactions. Second, we assume that the demand function is also dependent on the oracle’s selfishness. 

The demand function is inversely related to the level of the oracle’s selfishness, since a blockchain would 

not highly value the services of a selfish oracle that offers subpar services to the nodes in order to 

conserve its own resources. 

Further, we assume the supply of trust at the oracle as a function of the size of the blockchain it serves 

and the level of its own selfishness. We assume that as the size of the blockchain increases, the workload 

of the oracle increases due to the increased number of requests for external data from the nodes. This 

increased workload has to be accommodated within the limited resources that the oracle possesses. Thus, 

the oracle is required to “do more with less”, thereby affecting the network performance. We model this 

assumption of an inverse relationship between network size and oracle performance in terms of the 

commoditized trust variable. An oracle that is able to perform subpar work is able to serve more nodes 

than when it consistently performs at the highest level of computational integrity. In essence, the increase 

in size of the blockchain results in a decrease of trust that the oracle can supply. We further provide 

bounds on the oracle’s performance by modeling it as an agent with preferences toward serving the 

blockchain. The motivation for this model is in Sliwka (2007), where the authors study the economics of 

incentives in a setting with three types of agents: selfish agents, fair agents and conformist agents. While 

the first two types of agents behave in selfish/fair manners, the conformists are motivated to act fairly 

only if they think that a sufficient number of other agents are behaving fairly as well. We apply this 

assumption of a continuum of selfishness to our system of the blockchain nodes and the oracle, where a 

node formulates its trust in the oracle based on the trust placed in the oracle by its peers. We assume that a 

selfish oracle exhibits high degree of incompetence to accomplish a task so that task accomplishment 

utilizes the least amount of its computational resources. On the other hand, we assume that a fair oracle 

seeks to maximize the utility of the blockchain by exhibiting least amount of incompetence. We study the 

interaction between collective trust, degree of oracle’s selfishness and the size of the network that a 

selfish or fair oracle can serve. 



Finally, we study the sensitivity of the demand function of trust to changes in the collective trust placed 

by the blockchain in the oracle. We define a variable, called the collective trust elasticity (CTE), that 

measures the sensitivity of the demand for trust from the blockchain as function of changes in collective 

trust. The motivation for measuring the elasticity of the demand for trust lies in its scarcity in the 

blockchain-oracle system. The elasticity of demand functions has its origins in microeconomics 

(Anderson et al., 2010) where the demand for a good is assessed relative to its price. Consequently, 

elasticity of demand for various commodities across several domains has been studied, including crude oil 

(Cooper, 2003), electricity (Kirschen et al., 2000) and patents (Rossenfosse & Potterie, 2012). We use the 

same notion of elasticity to measure the impact of varying collective trust and oracle selfishness 

parameters on the CTE. The CTE is calculated within the bounds of the degree of selfishness of the 

oracle. We use these results for the CTE to inform the design of a blockchain where the oracle was 

incentivized to offer a consistent level of service to the blockchain. Thus, instead of an oracle that choses 

to behave in a selfish or fair manner, we offer an incentive to the oracle to perform with reasonable level 

of altruism. The implementation of such incentives can take various forms, such as increase in 

computational resources, decrease in network size or number of requests. We develop a mathematical 

model for the incentive and analyze the behavior of the oracle and the blockchain at equilibrium for the 

case of an incentivized oracle. These results are then used to determine the optimum number of the nodes 

that can be served by an oracle in both selfish and fair modes of operation.  

To the best of our knowledge, our work is the first study to systematically explore the consequences of 

misplaced trust in the oracle. We broadly use the term ‘oracle’ to refer to both centralized and 

decentralized oracles. Additionally, our work can be applied to both software and hardware oracles that 

serve as intermediaries between the blockchain and untrusted environments. Our work has implications in 

areas where smart oracles, powered by deep-learning algorithms, can choose to offer varying Service 

Level Agreements (SLAs) to the blockchain. These deep-learning algorithms could infer key metrics 

about the blockchain and create smart contracts that dynamically create incentives for optimizing network 

performance. Thus, the oracle’s selfishness and trust placed by nodes in the oracle will significantly 



impact the network performance. This is especially true for blockchains with multiple oracles, where the 

performance of oracles will vary according to their load and self-preserving motives.  

BACKGROUND  

The fundamental question that this paper seeks to address is that of trust in an oracle’s services. In this 

section, we showcase the notion of trust in three contexts: (a) sociological constructs of trust in 

traditional, offline networks, (b) trust in peer-to-peer systems and crowdsourced systems, and (c) trust in 

blockchain systems and oracles. These three contexts follow the natural evolution of trust-based 

applications, moving from offline networks to peer networks to the blockchain.  

Trust in offline social networks: The notion of trust has been studied through the lens of computational 

sociology focusing on aspects such as reputation and credibility. In Benabou &Tirole (2016), the authors 

develop a theory of individual’s prosocial behavior as a function of the individual’s concern for 

reputation. Their model showed that extrinsic incentives offered for good deeds had the potential of 

spoiling the reputational values of the deed, since it could be postulated that the motive of the good deed 

was inspired by the incentive. They also showed how prominence and memorability were strong 

incentives in encouraging prosocial behavior, and greater reputation might lead to lesser commitment 

from individuals who want to refrain from overtly disclosing their deeds. Further, the model showed that 

a person’s actions might influence others to take up actions that are either strategic substitutes or 

complements. The former occurs when the actions generate negative publicity, while the latter occurs in 

instances of positive publicity. Finally, the authors showed that incentives for prosocial behavior can 

affect the elasticity of the supply curve. Gachter et al. (2013) studies the influence of peer effects in 

shaping an individual’s preferences and actions. Further evidence of the incentives in the form of social 

diversity serving to encourage prosocial behavior is in Kovarik et al (2012). Here, the authors show that 

the behavior of a few central individuals are readily propagated through the network, and these roles are 

occupied by more prosocial individuals. The role of trust in virtual communities has been studied in Nah 

et al. (2017), where the authors study the impact of task complexity on trust and show that trust is the 



intermediary between task complexity and team satisfaction. Additional work on the role of trust in teams 

has been documented in Siau et al (2010) where the authors explore the role of trust in team projects.  

A detailed exposition of the interplay between provenance, trust and reputation is in Packer et al. (2014) 

which informs their design of an auditable reputation service. Here, the authors describe four categories 

of use cases in reputation and provenance: functional, auditable, privacy/security and administrative. A 

high reputation impacts the trust that users and peers place in the system, thereby promoting 

accountability. The work in Macy & Skvoretz (1998) studies the evolution of trust between strangers. The 

authors study trust in two types of interactions – those between neighbors and those between strangers. 

Using genetic algorithms to study the evolution of trust and cooperation in both scenarios, the study found 

that trust evolves in stages – initial widespread distrust, followed by drift toward trustworthiness, local 

trust, local cooperation, diffusion via contact with strangers and finally culminating in universal trust. 

They found that the spread of cooperation and trust was heavily influenced by social proximity and in-

group altruism. Work in Mui et al. (2002) provides a brief survey of trust and reputation models and then 

proposes a computational model that incorporates the role of reciprocity and reputation in building trust. 

This work structured reputation as a function of the social network that the agent is embedded in, thus 

leading to trust being derived from reputation. The role of a trust network in knowledge-sharing in multi-

agent societies was studied in Ding et al (2004). Here, trust was determined from the contributions of an 

agent to a knowledge-base. They showed that trust was crucial in the propagation of information through 

a combination of strong and weak trust paths. Thus, the length of a propagation path is used as an 

indicator of trust, where longer paths are considered more trustworthy. Finally, trust also played into data 

retrieval in determining the most trustful set of agents to be queried for retrieval of truthful information. 

The role of trust in forming and maintaining social relationships was studied in Sutcliffe & Wang (2012). 

This study proposed that when a history of interactions is available, social relationships consisting of 

strong, medium and weak ties evolve through the presence of an affect component. Strong ties are 

sustained despite diminishing or plateaued utilities, suggesting that emotional constructs rather than 

returns govern the sustenance of the relationship. In contrast, medium and weak ties create scope for a 



higher degree of non-cooperative behavior that does not reflect levels of deep trust. Another 

computational model of trust was studied in Czap (2005). The authors modeled trust as a dynamic factor 

that varied as a function of the following factors: agent’s trust in a peer, the weight attached to the trust 

relative to profitability and the agent’s own trustworthiness modeled as a threshold of defection. They 

showed that in general, trustful multiagent systems tend to be more profitable. The model also showed 

that over time, cooperation and discovery influenced the degree of trust in a relationship. The role of trust 

in information disclosure was surveyed in Nixon et al. (2005), where the authors study the impact of 

security, privacy and trust in smart environments for pervasive computing.  

Trust in peer-peer and crowdsourced systems: The role of trust in a sharing economy has been studied 

in Hawlitschek et al. (2016), where the authors propose a model for trust that is differentiated among 

three categories of people, platform and product. The authors showed that higher level of trust in the three 

categories positively influence decisions to consume the product. The work in Yu et al. (2012) studies the 

notion of trust in crowdsourced systems. They showed that designing crowdsourced systems that rely 

solely on trustworthiness of the individuals might result in decline of social welfare, since they observed 

that the natural propensity of individuals is to cheat when given a chance. The authors proposed a trust 

management model that enhances the system by focusing on both fair treatment of trustworthy workers 

and increase in the social welfare of the system. Trustworthiness of crowd-reported information in 

crowdsourced systems has been studied in Venanzi et al. (2013). Here, users’ trustworthiness is estimated 

from the fused outputs of the crowd through a model that is also sensitive to collusion attacks. In Wang et 

al. (2016), the authors explore crowdsourcing trust in the paradigm of the social Internet of Things 

(SIoT), where humans and devices relay on each other for services. The trust is introduced in the form of 

a reputation-based auction mechanism, where trustworthy participants are selected and awarded 

incentives for completing tasks in a trustworthy manner. The role of trust in motivating individuals to 

participate in crowdsourcing was also explored in Ye & Kankanhalli (2017), where the authors develop a 

model for crowdsourcing participation based on benefits, costs and trust. They found that among other 

factors, trust increased the participation and trust was positively affected by rewards.  



A role-based trust model for trust management in peer-peer systems was proposed in Khambatti et al. 

(2004). Here, the trust values are assigned proportional to peer status. Thus, a peer with more links with 

higher link weights is considered more trustworthy. Likewise, peers can be punished for malicious 

behavior by severing of links causing a decrease in trust and social status. An analysis of the attributes of 

trust is in Bhattacharya et al. (1998), where the authors describe trust as a desirable entity that exists in 

uncertain and risky environments, is probabilistic and is situation and person-specific. The authors 

provide several examples of trust-inducing interventions including incentives, peer pressure and strategic 

network design. The importance of trust in building recommender systems was explored in Medo et al. 

(2009) for the specific application of online news recommendation. The model reflects the opinions of 

like-minded individuals and prior submission records to determine best authorities for news 

recommendations.  Issues of trust in crowdsourcing applications were studied in Weaver et al. (2012) for 

specific applications of crowdsourcing real-time information in the aftermath of disasters. The authors 

investigated trustworthiness of submitted information, where malicious actors like terrorist groups might 

submit untrustworthy information to divert disaster-response resources. They explore trustworthiness as a 

function of three tools, in increasing order of sophistication. In the first tool, trust is determined by the 

level of trust in the group that the individual belongs to. For e.g., a user belonging to the group of admins 

might possess a higher level of trust than an anonymous user. In the second tool, trust is determined by a 

crowdsourcing application where user click on stars (0-5) to indicate their rating of data posted by the 

user. Over time, these ratings are aggregated to indicate trustworthiness and usefulness of the data. The 

last tool for enhancing trust is in the form of machine-learning algorithms that are harnessed to combine 

multiple sources of data in determining the truthfulness of posted data. For e.g., a user who reports an 

earthquake will generate a higher trust rating in the model if the data can be verified from USGS 

earthquake reporting tool. The notion of incentives to increase trust has been studied in Goel et al. (2019), 

where authors study scenarios in which questions are to be answered on a decentralized platform. Agents 

are rewarded for their contributions to the outcomes of the questions. The model showed that even with 



the presence of a fraction of honest agents, undesirable equilibria (non-truthful resolution of the 

questions) can be averted in favor of honest outcomes. 

Trust in blockchain, smart contracts and oracles: An overview of trust mechanisms in decentralized 

blockchain-based markets in Subramanian (2018). Here, the author advocates the use of reputation 

programs that utilize the decentralized, immutable nature of the blockchain to provide trustworthy 

services in a transaction market. The use of the blockchain has multiple advantages including a decrease 

in transaction time and affords the implementation of smart contracts which results in lower transaction 

costs, and increased privacy and security. The foundations of cryptographic trust in blockchain were 

leveraged in Zou et al. (2018) to develop a new consensus protocol called Proof-of-Trust (PoT), which 

can be leveraged for use in crowdsourcing applications. Similar to blockchain Proof-of Work (PoW), the 

PoT consensus protocol chooses transaction validators based on the trust value of participants.  

A systematic study of smart contract architectures is in Wang et al. (2018), and specific applications to 

the lifecycle of a contract (formation and negotiation, storage, enforcement, monitoring, modification and 

dispute resolution) is presented in Idelberger et al. (2016). Work in Beck et al. (2016) discusses the 

concept of trust in a smart contract and illustrates it with the help of a smart contract designed for 

intermediary-free transactions. In Watanabe et al. (2016), the authors study the concept of credibility in a 

blockchain contract, where credibility is used as a core component of trust. In this work, a higher number 

of contracts implies a higher level of trust. This credibility-based model has a two-fold objective: 

enhancing the trust that peers place in the node, and serving as a deterrent for malicious behavior for fear 

of negative credibility among peers. The use of smart contracts for insurance markets was explored in 

Sheth and Subramanian (2019), where the blockchain was used to automate insurance transactions and 

record critical data in pricing, underwriting, issuance and claim settlements in a trusted environment.  

Decentralized oracles were first proposed in Peterson et al. (2015). The authors proposed Augur, a 

decentralized oracle that allows people to trade in prediction markets for low costs. In Augur, the ability 

to create a market is available freely, and all users may freely trade on any market. The system uses 

reputation tokens as a reward/penalty mechanism to regulate the reporting of the market outcomes and its 



distance from the outcomes of the actual event. Honest reporting of outcomes was shown to result in 

stability of the prediction markets using incentives that increased with the number of reputation tokens 

amassed for the reporting.  The incentive structure developed in Augur seeks to increase trust by 

leveraging reputation. Additional incentives are made available in the form of fees and bonds that are paid 

out to market creators and reporters. The work in Freeman et al. (2017) studies a mechanism for 

increasing truthful reporting in prediction markets. In this mechanism, truthfulness of reporting is 

enhanced by basing the outcome of prediction on the proportion of arbiters who vote affirmatively for the 

outcome, instead of a binary outcome. Peer arbiters can increase the strength of a signal based on the 

signals received by peers. Additionally, arbiters are rewarded for their efforts in gathering and reporting 

information. These rewards are funded by trading fees imposed on the agents. The role of an oracle in 

prediction markets was also studied in Adler et al. (2018), where the work studies ASTREA, a 

decentralized oracle that attests to the veracity of Boolean propositions. The authors use a game-theoretic 

framework with three players: voters, submitters and certifiers. Submitters submit a Boolean proposition 

to the system and pay a fee for the services. Voters play a low-risk game by providing Boolean answers to 

the question. Certifiers play a high-risk game where they place larger stakes on the outcomes of the voting 

and certification process. The framework is designed with rewards/penalties for the players, depending on 

the way they vote. They show that this framework achieves a desirable Nash equilibrium where all 

rational players behave honestly. Reputation-powered incentives were also studied in dePedro et al. 

(2017) where the authors propose Witnet, a framework where miners earn tokens called Wit for 

retrieving, accessing and delivering data from websites to the blockchain. An authenticated data feed 

system called TownCrier that incorporates confidentiality was proposed in Zhang et al. (2016). This work 

proposed an end-end solution for implementation of Town Crier that used trusted computing platforms to 

guard against malicious processes. The question of a dysfunctional oracle was raised in Allen et al. 

(2019), where the authors pondered upon the implications of a malfunctioning oracle on smart contract 

performance.  



Our work leverages the altruistic preferences of the oracle and the trusting preferences of the blockchain 

to dynamically assess the trustworthiness of the oracle. Thus, the smart contracts generated between the 

oracle and blockchain are informed by a behavioral contract theory approach (Koszegi, 2014). Further 

work on the generation on tamper-proof random numbers for smart contracts on the blockchain is in 

Chatterjee et al. (2019) where the authors call attention to the dearth of truly random numbers, thus 

rendering the blockchain vulnerable to tampering by miners. Additional work on security of smart 

contracts is in Nehai et al. (2018), Magazzeni et al (2017) and Tsankov et al. (2019). Specifically, our 

work differs from existing work in blockchain oracles in two ways. First, we assume that the oracle is 

able to choose its altruistic preference toward servicing the blockchain. Second, we question the 

heretofore held assumption of complete trust placed in the oracle by the blockchain. The implications of 

these assumptions extend to situations where competing parties place varying amounts of trust and have 

different world-views about the outcomes of a market. Thus, our model builds a model for trust that is 

decentralized and dynamic. This notion of trust placed in the oracle by the blockchain is unlike the trust 

required of workers or peers in crowdsourcing systems. Traditional crowdsourcing systems involve the 

use of “crowds” to provide services in a dynamic manner, whereas the blockchain oracle is a single entity 

that provides a requested service to the blockchain. Thus, instead of assessing the trustworthiness of a 

large set of nodes as in traditional crowdsourced systems, our work studies the trustworthiness of the 

oracle based on the trustworthiness ascribed to the oracle by fellow nodes. In keeping with the 

decentralized nature of blockchain, our model for trust reflects individual assessment of peer trust, as well 

the node’s assessment of the oracle’s selfishness. Unlike previous work that assumes honest agents, our 

work differs in that we do not assume the existence of honest agents. Instead, trust is built over time as a 

function of self and peer evaluations of an oracle, and even then, our model gives the agents free will to 

act rationally or irrationally by refusing to follow the wisdom of the peer network. Thus, unlike the 

previous work in Peterson et al. (2015), or Adler et al. (2018) that assumes the use of non-malicious 

resolution sources or honest reporters, our work allows for dynamic updates of trust in the oracle’s 

services based on peer assessment of the oracle’s work. Additionally, to combat the influence of overtly 



malicious peers, a node may choose to only partially use the collective trust values of its peers in its own 

formulation for trust.  

COMMODITIZED TRUST MODEL FOR THE ORACLE-BLOCKCHAIN SYSTEM 

Demand Function for Nodes  

Since the notion of an oracle is built on the premise of trust, our model commoditizes trust so that there is 

market for trading trust. The nodes in the blockchain demand a value of trust from the oracle, specified by 

the demand function 𝐷 . We model the demand function 𝐷 as dependent on two parameters – we assume 

that the parameters for the demand function are the collective trust placed by all nodes in the network 

(𝑐𝑐𝑜𝑙𝑙) and the selfishness of the oracle 𝜃. Thus, 𝐷 = 𝑓(𝑐𝑐𝑜𝑙𝑙 , 𝜃), signifies the demand for trust from the 

nodes in the system.  

For some constants  𝜔1 and 𝜔2, we can write 𝐷 as 

𝐷 = 𝜔1𝑐𝑐𝑜𝑙𝑙 − 𝜔2𝜃     (1) 

The term for selfishness 𝜃 has a negative slope, since the higher the level of oracle’s selfishness, the 

lower is the amount of trust demanded the blockchain. Similarly, the higher the level of the collective 

trust 𝑐𝑐𝑜𝑙𝑙, the higher is the demand for trust from the blockchain. Table 1 shows the variables in our 

model.  

Table 1. List of symbols and their meanings  

Variable Meaning 

𝐷 Demand function for trust 

𝑐𝑐𝑜𝑙𝑙 Collective trust 

𝑐𝑖 Trust placed in oracle by node 𝑖 

𝜃 Degree of oracle selfishness 

𝜔1, 𝜔2 Constants in demand function 𝑄𝑑 



𝛼𝑖 Trust modulation factor for node 𝑖 

𝑆 Supply function for trust 

𝛽1, 𝛽2 Constants in supply function 𝑄𝑠 

𝑛 Number of nodes served by oracle 

𝐷𝑒𝑞 Demand function at equilibrium 

𝐸 Collective trust elasticity 

𝜌 Percentage of nodes that receive 

incentives 

𝜇 Amount of incentives added to 

individual node’s trust values 

𝐷𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 Demand function for trust with 

incentives 

𝑛𝑠 Number of nodes supported by 

selfish oracle 

𝑛𝑓 Number of nodes supported by 

fair oracle 

 

We now develop the framework for modelling the collective trust. For a network of 𝑛 nodes on the 

blockchain, we assume that the collective trust dynamically reflects the amount of trust that a node 𝑖 

places in the network plus the impact of other nodes’ trust in the oracle. To accommodate varying 

preferences for dependence on social norms for trust, every node does not fully change its trust in the 

oracle to suit the trust preferences of other nodes in the networks. Each node modulates the trust of its 

peers by the trust modulation factor, denoted by 𝛼𝑖, where 0 < 𝛼 < 1. If 𝛼 = 0, it implies that node 𝑖 

does not trust its peers’ assessment of the of trust placed in the oracle. A value of 𝛼 = 1 implies that the 



node 𝑖 fully trusts its peers’ assessment of trust placed in the oracle. The following equation summarizes 

this model of collective trust: 

𝑐𝑐𝑜𝑙𝑙 = ∑ (𝑐𝑖 + ∑ 𝛼𝑖
𝑐𝑗−𝑐𝑖

𝑛−1
𝑛
𝑗=1 )𝑛

𝑖=1       (2) 

where 𝑗 ≠ 𝑖. 

To illustrate this framework (Figure 1), consider nodes 𝐴, 𝐵, 𝐶 and 𝐷 that are placing their trust in oracle 

𝑂. The amount of trust placed by the nodes in 𝑂 are in Table 2. 

The nodes can pass a hard information signal similar to work in Rajan, et al. (2010) containing their trust 

values. Nodes also have their own belief system to assign a level of trust in their peers’ trust assessment 

of the oracle. This belief system is quantified by the variable 𝛼𝑖, which denotes the level of trust that node 

𝑖 places in the trust values of other nodes in the system. For the system described in this example, the 

nodes can update their trust value as follows. 

 

Figure 1: A blockchain system of an oracle and four nodes (𝐴, 𝐵, 𝐶, 𝐷). Each node has two attributes, the 

trust it places in the services of the oracle 𝑐𝐴, 𝑐𝐵, 𝑐𝐶 , 𝑐𝐷) and the trust it places in the trust placed by its 

peers in the oracle’s services (𝛼𝐴, 𝛼𝐵, 𝛼𝐶 , 𝛼𝐷). The collective trust 𝑐𝑐𝑜𝑙𝑙 placed by all nodes in the oracle 



and the oracle’s selfishness 𝜃 determine the demand function 𝐷. The oracle supplies trust 𝑆 as a function 

of its selfishness and the number of nodes 𝑛.  

 

Table 2. Example of trust assignments for computation of collective trust 𝑐𝑐𝑜𝑙𝑙 

Node Trust Value 

𝐴 5 

𝐵 6 

𝐶 3 

𝐷 8 

For node 𝐴: 

𝑐1 =  5 + 𝛼1

(6 − 5) + (3 − 5) + (8 − 5)

3
= 5 +

2𝛼1

3
 

For node 𝐵: 

𝑐2 =  6 + 𝛼2

(5 − 6) + (3 − 6) + (8 − 6)

3
= 6 −

2𝛼2

3
 

For node 𝐶: 

𝑐3 =  3 + 𝛼3

(5 − 3) + (6 − 3) + (8 − 3)

3
= 3 +

10𝛼3

3
 

For node 𝐷:  

𝑐4 =  8 + 𝛼4

(5 − 8) + (6 − 8) + (3 − 8)

3
= 8 −

10𝛼4

3
 

Thus, the collective trust 𝑐_𝑐𝑜𝑙𝑙  is given by 

𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 = 22 +
2𝛼1

3
−

2𝛼2

3
+

10𝛼3

3
−

10𝛼4

3
 

Simplifying equation (2) for a system of 𝑛 nodes, we get  



𝑐𝑐𝑜𝑙𝑙 =  ∑ 𝑐𝑖(1 − 𝛼𝑖) +
1

𝑛−1
∑ (𝛼𝑖 ∑ 𝑐𝑗

𝑛
𝑗=1 )𝑛

𝑖=1
𝑛
𝑖=1  , 𝑗 ≠ 𝑖        (3) 

Substituting equation (3) in equation (2) for the demand function for trust, we get 

𝐷 = 𝜔1 [∑ 𝑐𝑖(1 − 𝛼𝑖) +
1

𝑛−1
∑ (𝛼𝑖 ∑ 𝑐𝑗

𝑛
𝑗=1 )𝑛

𝑖=1
𝑛
𝑖=1 ] − 𝜔2𝜃    (4) 

Supply Function at the Oracle  

Next, we study the supply function for trust 𝑆. The amount of trust that the oracle 𝑂 can supply to the 

nodes is given by  

𝑆 = −𝛽1𝑛 + 𝛽2𝜃         (5) 

Equation (5) reproduces the impact of resource constraints (computational capacity, performance, 

throughput) of the oracle on the supply of trust. We assume that the selfishness of the oracle is inversely 

proportional to the amount of trustworthy work done by the oracle. The inverse relationship between the 

size of the network and its selfishness is driven by the increased workload that the oracle has to satisfy for 

a larger network. Examples of this inverse relationship between size and performance are manifested in 

blockchain networks (Scherer, 2017), and are widespread in diverse settings such as wireless networks 

(Gupta & Kumar, 2000), wireless sensor networks (Tian & Georganas, 2002) and large ad hoc networks 

(Naumov & Gross, 2006). The negative slope of the supply function 𝑆 with respect to the size of the 

blockchain 𝑛 indicates that the as the size of the blockchain increases, the supply of trust at the oracle 

decreases. However, as the size of the blockchain increases, its selfishness increases. This is reflected in 

the positive slope of the supply function for trust with respect to the selfishness.  

The rest of this analysis assumes the following two tendencies of oracles: 

• Selfish oracle: A selfish oracle demonstrates a high propensity to conserve resources in the face 

of increasing demands from a larger network of nodes, i.e. 𝜃 → 1. Thus, a selfish oracle would 

exhibit a value of 𝜃 closer to 1.  



• Fair oracle: A fair oracle minimizes the propensity to conserve resources and is fair to the nodes 

by providing higher quality of service to the nodes, i.e. 𝜃 → 0. Thus, a fair oracle would exhibit a 

value of 𝜃 closer to 0.  

It is important to note a clarification in this categorization of oracles. Although we deem oracles as fair or 

selfish, the value of the degree of oracle selfishness, 𝜃, lies along a spectrum from 0 to 1. Thus, given two 

different values of selfishness, 𝜃1 and 𝜃2, if 𝜃2 >  𝜃1, then the oracle with selfishness value 𝜃1 is 

considered more selfish even if 𝜃1 tends to 1.  

Equilibrium Analysis of Demand and Supply Function for Trust at the Oracle  

We now model the equilibrium behavior for the demand and supply functions of the oracle and the 

blockchain.  Equating equations (4) and (5), we get 

𝐷 = 𝑆 

𝜔1𝑡𝑐 − 𝜔2𝜃 = −𝛽1𝑛 + 𝛽2𝜃    (6) 

Selfish Oracle  

For a selfish oracle, the value of the selfishness parameter 𝜃 tends closer to 1. Equation (6) thus simplifies 

to  

𝑐𝑐𝑜𝑙𝑙 =  
𝛽2−𝛽1𝑛+𝜔2

𝑛
     (7) 

Substituting (7) in equation (4), we get the demand function, 𝐷𝑒𝑞 ,for a selfish oracle at equilibrium.  

𝐷𝑒𝑞 = 𝛽2 − 𝛽1𝑛   (8) 

Fair Oracle  

For a fair oracle, the value of the selfishness parameter 𝜃 is closer to 0 (𝜃 → 0).  In this case, then, 

equation (6) simplifies to  



𝑐𝑐𝑜𝑙𝑙 =
−𝛽1𝑛

𝜔1
    (9) 

Substituting equation (9) in (4), we get the demand function, 𝐷𝑒𝑞 for a fair oracle at equilibrium. 

𝐷𝑒𝑞 = −𝛽1𝑛    (10) 

Elasticity of Collective Trust 

Since collective trust placed by the blockchain in the oracle is a significant component of the demand 

function, we study the sensitivity of the demand function to the collective trust. Similar to the previously 

mentioned notion of elasticity of demand functions with origins in microeconomics (Anderson et al., 

2010) where the demand for a good is assessed relative to its price, we define the Collective Trust 

Elasticity (CTE), denoted by 𝐸. Thus, the CTE, 𝐸, is given by the sensitivity of the demand function to 

changes in the collective trust 

𝐸 = (
Δ𝐷

Δ𝑐𝑐𝑜𝑙𝑙
) (

𝑐𝑐𝑜𝑙𝑙

𝐷
)       (11) 

Substituting equation (1) in (11), we get 

𝐸 =
𝜔1𝑐𝑐𝑜𝑙𝑙

𝜔1𝑐𝑐𝑜𝑙𝑙−𝜔2𝜃
      (12) 

Equation (12) shows that the CTE is bound by the selfishness of the oracle.  

Selfish Oracle  

As the value of the selfishness parameter 𝜃 tends closer to 1, equation (12) yields 

𝐸 =
1

1−𝜔2 (𝜔1𝑐𝑐𝑜𝑙𝑙)⁄
     (13) 

Equation (13) shows that when an oracle gets more selfish, as the collective trust 𝑐𝑐𝑜𝑙𝑙 increases, the 

sensitivity of the demand function to the collective trust decreases. This is an example of an elastic 

demand function that demonstrates the impact of collective trust on the CTE value.  

Fair Oracle  



As the value of the selfishness parameter 𝜃 tends closer to 0, equation (12) yields 

𝐸 = 1      (14) 

Equation (14) denotes a perfectly elastic function. An increase in the value of the collective trust does not 

increase the demand for trust, thereby showing that the network prefers a fair oracle over a selfish oracle. 

Bounds on the Collective Trust Elasticity 

We now study the bounds of 𝐸 by using the oracle’s tendency toward selfishness or fairness as the limits. 

Combining equations (13) and (14), we get the bounds for 𝐸. 

1 ≤ 𝐸 ≤
1

1−𝜔2 (𝜔1𝑐𝑐𝑜𝑙𝑙)⁄
     (15) 

Creating Incentives  

Incentives have been shown to alter the environment (Bowles & Polania-Reyes, 2014) in which new 

preferences are learned, and our model aims to enhance the performance of the oracle-blockchain smart 

contract system using incentives. We envision incentives such as allocation of additional computational 

resources, or the creation of locked contracts that guarantee a fixed fairness and load for specific 

durations. Since incentive design has been shown (Benabou & Tirole, 2006) to be a significant tool in 

creating more efficient markets, a blockchain system that can leverage the utility of incentives can create 

self-regulating environments for use in distributed ledger applications. 

We assume a reasonable oracle (𝜃 = 0.5) whose level of selfishness is at the midpoint of complete 

selfishness (𝜃 = 1) and complete fairness (𝜃 = 0). We create an elastic incentive for nodes, based on the 

CTE, to increase their trust in the oracle based on the assumption of a reasonable oracle. We further 

model the incentives as non-uniformly applied, i.e. a percentage 𝜌 of the nodes elect to receive incentives, 

whereas others do not. The amount of incentive added to an individual node’s trust is obtained from the 

midpoint of the bounds specified by equation (17). Thus, the incentive 𝜇, is given by  



𝜇 =
1

2
[1 +

1

1−𝜔2 (𝜔1𝑡𝑐)⁄
]     (16) 

The demand function with incentives, denoted by 𝐷𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒𝑠, is formulated by adding the incentive 𝜇 to 

𝜌% of nodes as follows: 

𝐷𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 = 𝜔1𝑡𝑐 +
𝜌𝑛

2

1

2
[1 +

1

1−𝜔2 (𝜔1𝑡𝑐)⁄
] − 𝜔2𝜃  (17) 

Here, we study how incentives modify the behavior of the system at equilibrium for the demand and 

supply functions for trust. 

𝐷𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 = 𝑆     (18) 

Substituting equations (5) for the supply function and (17) for the CTE in (18), we get 

𝜔1𝑡𝑐 +
𝜌𝑛

2

1

2
[1 +

1

1−𝜔2 (𝜔1𝑡𝑐)⁄
] − 𝜔2𝜃𝐼 = −𝛽1𝑛 + 𝛽2𝜃  (19) 

Optimal Number of Nodes in the Incentive Model 

We are interested in finding the optimal number of nodes that can be served by an oracle where 𝜌% of 

nodes are offered incentives. To find this, we optimize equation (21) for the equilibrium behavior with 

incentives.  

Let 𝑓(𝑐𝑐𝑜𝑙𝑙 , 𝑛) =  𝜔1𝑡𝑐 +
𝜌𝑛

2

1

2
[1 +

1

1−𝜔2 (𝜔1𝑡𝑐)⁄
] − 𝜔2𝜃𝐼 + 𝛽1𝑛 − 𝛽2𝜃 (20) 

We optimize equation (22) for 𝜃 = 1 to find the number of nodes 𝑛𝑠 that can be supported by a selfish 

oracle. Setting the partial derivatives of 𝑓 with respect to 𝑐𝑐𝑜𝑙𝑙 to be equal to zero, we get, 

𝜕𝑓

𝜕𝑐𝑐𝑜𝑙𝑙
= 0    (21) 

For 𝜃𝐼 = 1, equation (21) results in  

𝑐𝑐𝑜𝑙𝑙 =  
𝜔2

2𝜔1
−

𝜌𝑛

4𝜔1
 

Setting the partial derivatives of 𝑓 with respect to 𝑛 to be equal to zero, we get, 



𝜕𝑓

𝜕𝑛
= 0  (22) 

For 𝜃𝐼 = 0, equation (21) results in  

𝑐𝑐𝑜𝑙𝑙 =  
𝜔2

2𝜔1
−

2𝛽1

𝜌𝜔1
  (23) 

Equation (22) and (23), we get the number of nodes that can be supported by a selfish oracle (𝑛𝑠) as 

follows: 

𝑛𝑠 =  
8𝛽1

𝜌2  (24) 

Repeating the analysis in equations (21) – (23) for the case of a fair oracle (𝜃𝐼 = 0), we get the number of 

nodes supported by a fair oracle (𝑛𝑓) as follows: 

𝑛𝑓 =  
2𝛽1

𝜌2  (25) 

Comparing equations (24) and (26), we see that the oracle can support a quarter of the nodes in fair mode 

than when operating in the selfish mode.  

RESULTS AND ANALYSIS  

In this section, we evaluate the performance of the oracle and the blockchain environment with our model 

of commoditized trust. We present the simulation results of four components of our model – (i) CTE of 

the trust demand function with varying levels of the selfishness parameter 𝜃, including bounds on the 

CTE (ii) role of the incentive 𝜇 in the demand for trust (iii) optimal number of nodes supported with 

incentives by a selfish/fair oracle and (iv) comparison of the demand for trust in various environments 

(equilibrium, incentives, non-equilibrium). 

Collective Trust Elasticity of the trust demand function 

We study the CTE of the trust demand function in three scenarios: (i) 𝜔1 > 𝜔2, where collective trust 

𝑐𝑐𝑜𝑙𝑙 plays a greater role in the determination of the demand function for trust rather than oracle 



selfishness 𝜃 (ii) 𝜔1 = 𝜔2, where collective trust 𝑐𝑐𝑜𝑙𝑙 is weighted equally alongside oracle selfishness 𝜃 

in the determination of the demand for trust and (iii) 𝜔1 < 𝜔2, where collective trust 𝑐𝑐𝑜𝑙𝑙 plays a lesser 

role in the determination of the demand function for trust rather than oracle selfishness 𝜃. In each of these 

scenarios, we study the elasticity of the collective trust 𝑐𝑐𝑜𝑙𝑙 with varying degrees of oracle selfishness 

𝜃. The level of selfishness is varied from 𝜃 = 0.1 (fair), 𝜃 = 0.5 (reasonable), 𝜃 = 0.8 (selfish). 

      

Figure 2. CTE, for 𝑐𝑐𝑜𝑙𝑙 ≫ selfishness 𝜃                 Figure 3. CTE, for 𝑐𝑐𝑜𝑙𝑙  ~ selfishness 𝜃. 

(i) 𝜔1 > 𝜔2: Here, the collective trust 𝑐𝑐𝑜𝑙𝑙 plays a greater role in the determination of the 

demand function for trust than the oracle selfishness 𝜃. We see that the CTE is lowest when 

the oracle is fair (𝜃 = 0.1), demonstrating almost unit elastic behavior. This indicates the 

amount of change in collective trust impacts the CTE by a similar amount.  However, as 𝜃 

increases, i.e. for an oracle that displays increasingly selfish tendencies, the CTE is higher 

denoting a highly elastic function. Thus, at smaller values of the collective trust (𝑐𝑐𝑜𝑙𝑙), the 

change in the amount of trust demanded from the oracle is high. Further, as the value of 

collective trust in the oracle increases, the CTE reduces indicating a smaller change in the 

amount of trust demanded from the oracle.  

 

 



 
 

Figure 4. CTE, for 𝑐𝑐𝑜𝑙𝑙 ≫ selfishness 𝜃 Figure 5. Upper bounds on the CTE 

(ii) 𝜔1 = 𝜔2: When 𝜔1 = 𝜔2, the selfishness of the oracle and the collective trust play equal 

roles in the determination of trust placed in the oracle. Thus, the oracle is more selfish than 

when 𝜔1 > 𝜔2. We see the same general trends apply for the slope of the CTE, whereas 

collective trust increases, the change in the amount of trust demanded from the oracle is 

small. However, we see that for selfish oracle (𝜃 = 0.5, 0.8), the value of the CTE is higher 

than the previous case where 𝜔1 > 𝜔2. This finding is indicative of the increased selfishness 

of the oracle causing a general decrease in demand for trust. 

(iii) 𝜔1 > 𝜔2: In this case, the oracle’s selfishness plays a greater role in the determination of 

trust than the collective trust placed in the oracle. We see that, of the three cases (𝜔1 >

𝜔2, 𝜔1 = 𝜔2, 𝜔1 < 𝜔2), the CTE is the highest indicating a large change in the amount of 

trust demanded by the nodes. However, the slope of the CTE function for 𝜃 = 0.1 stays the 

same through all three cases, showing the optimal behavior of the system to be unit elastic for 

small values of oracle selfishness 𝜃.  

Figure 5 shows the bounds on the CTE as derived in equation (15). We see that the lower bound of the 

CTE is 1, indicating that the CTE in our model cannot be inelastic. An inelastic trust function implies that 

as the collective trust increases, the demand for the oracle’s services will decrease. We study the variation 

of the upper bound of the CTE in the same three scenarios (𝜔1 > 𝜔2, 𝜔1 = 𝜔2, 𝜔1 < 𝜔2). From Figure 



4, we see that the CTE is the highest when collective trust is the lowest, and is consistent with the 

findings in Figures 2, 3, and 4.  

Role of incentives in the demand for trust 

Figure 6 shows the distribution of incentives 𝜇 as a function of the collective trust 𝑐𝑐𝑜𝑙𝑙 . We study the 

distribution of incentives 𝜇 under the same three scenarios as above (i) 𝜔1 > 𝜔2, (ii) 𝜔1 = 𝜔2, and (iii) 

𝜔1 < 𝜔2.. We see that when 𝜔1 > 𝜔2, as the collective trust 𝑐𝑐𝑜𝑙𝑙 increases, the slope of the incentive 

function is close to zero. In contrast, the slope of the incentive function as a function of change in 

collective trust is largest for the case when 𝜔1 < 𝜔2. This shows that as the collective trust increases, the 

incentive is highest for the nodes to trust the oracle since the node’s peers approve of the trustworthiness 

of the oracle. This finding is affirmed by the curve for 𝜔1 > 𝜔2, where the collective trust 𝑐𝑐𝑜𝑙𝑙 plays a 

greater role in determination of the trust function than oracle incompetence.  

        
 

Figure 6. Incentive distribution as a function of 

𝑐𝑐𝑜𝑙𝑙 . The higher the value of 𝑐𝑐𝑜𝑙𝑙 , higher is the 

incentive to trust the oracle. 

Figure 7. Comparison of selfish and fair modes 

of operation of the oracle with incentives for 

nodes. The oracle can support four times as 

many nodes in selfish mode as in fair mode. 

 

Optimal number of nodes supported with incentives by a selfish/fair oracle 

Figure 7 shows the performance of the system at equilibrium, where incentives based on the CTE are 

provided to 𝜌% of the nodes. The number of nodes supported by the oracle in both selfish and fair modes 

decreases exponentially as 𝜌 increases. In particular, the decline in the number of nodes that can be 



supported drops steeply when 30% or more of the nodes in the system accepted incentives. Thus, from 

Figure 7, for both the fair and selfish modes, the optimal value of 𝜌 for highest number of nodes 

supported by an oracle is 10%. This shows that significantly better network design can be obtained by 

providing incentives to a smaller subset of the nodes, rather than relying on the entire system to respond 

to incentives. This smaller subset could be higher-performing nodes that achieve efficient smart contract 

utility. This finding is in line with work reported in Banerjee et al (2011) and Gneezy et al (2011), where 

it has that increasing taxes does not cause people to work less, or that salary caps do not cause top athletes 

and CEOs to put in lower-quality work, or that welfare benefits do not cause low-income individuals to 

stop working or looking for paid employment. Instead, people’s motivations for working hard are shown 

to be related to more visceral motives – social status, dignity and reputation. While it is hard to quantify 

what the motives are for oracles or blockchain nodes to perform fairly, it is safe to say that offering 

incentives to the entire set of nodes and oracles might not be effective after all. Instead, offering 

incentives to a smaller subset who actually value it – whether it be computational resources or reputation-

boosting reviews – may be more valuable than offering it to the entire network. For example, high-tier 

oracles may value both reputation and computational resources, and nodes may value additional 

computational resources than reputation.  

Further, as expected, there is a striking difference between the number of nodes supported by the oracle in 

its fair and selfish modes of operation. Specifically, we see for low value of 𝜌 (< 50%), in the selfish 

mode of operation, the oracle can support four times as many nodes as in its fair mode of operation. The 

reason is that in the selfish mode, the oracle can choose to exhaust fewer resources to satisfy the smart 

contract requests of the nodes. This selfishness is characteristic of a self-preserving oracle, thus causing 

the oracle to achieve more with less. In contrast, the fair mode of operation requires the oracle to be self-

effacing, where it exhausts all its resources to satisfy the smart contract demands of its nodes. The results 

from Figure 7 demonstrate the “strain” placed on the oracle in the fair mode versus the selfish mode. 

Finally, we see that when 50% or more of the nodes in the system accept incentives, the performance of 



the oracle in selfish and fair modes starts converging. For these levels of incentivized nodes, the oracle 

has to meet the collective trust requirements of the smart contracts generated by larger number of nodes, 

thereby causing it to serve fewer nodes in the system. 

Comparison of the demand for trust in various environments 

Figures 6 and 7 shows the results of simulating the demand function for varying number of nodes. The 

demand function in each chart is plotted in three modes: (i) Demand as a function of the number of the 

nodes in non-equilibrium with the oracle supply function (ii) Demand as a function of the number of the 

nodes in equilibrium with the oracle supply function for both selfish and fair oracles and (iii) Demand 

function with incentives. In keeping with the results obtained in Figure (7) above, which shows the 

optimal percentage of nodes receiving incentives is 10%, we set the value of 𝜌 to be 0.1 for this 

simulation.  Across Figures 8 and 9, we see that the demand function for trust from the oracle decreases as 

the oracle’s selfishness increases. At equilibrium, when the supply of trust at the oracle matches the 

demand for trust from the nodes, the demand function is higher. The highest demand for trust from the 

oracle is obtained when nodes are offered incentives to trust the oracle.  

 

 

 

 

Figure 8. Demand for trust from fair oracle  Figure 9. Demand for trust from selfish oracle 

Discussion  



Our model aims to understand trust in a blockchain system where nodes in a trusted environment have to 

rely on an oracle to obtain data from an untrusted environment. More broadly, our work relates to the 

nature of trust in digital economies. By commoditizing trust, we created a model where trust can be traded 

like a commodity. Further, the behavior of the system can be enhanced by offering incentives to the nodes 

and the oracle to choose fairness in service, akin to a service-level agreement for the oracle. In order to 

better understand the implications of this model, it is useful to take a deeper look at the structure of our 

model. First, we tackle the notion of the collective trust elasticity (CTE). Our model studies the sensitivity 

of the demand function to the collective trust as a means of determining the impact of trust on the demand 

for the oracle’s services. However, other parameters in the demand functions such as number of nodes 𝑛, 

or the oracle’s selfishness may be alternative or complementary metrics to determine the sensitivity of the 

demand function.  

Second, we use the bounds of the CTE to determine incentives. Specifically, we chose a mean value of 

oracle selfishness (𝜃 = 0.5) to obtain the incentive 𝜇, as a way of assuring the nodes that the oracle 

would choose to honor an average level of fairness and reduce extreme selfishness. There are a number of 

reasons why the selfishness value could be set. For example, nodes might set a certain value of selfishness 

as a precursor to entering a smart contract. Alternately, the oracle might be able to vary the selfishness 

based on factors such as priority, scheduling policies and load balancing. Further based on these criteria, 

the oracle may also choose to be selectively selfish, such as being fairer to some nodes more than others.  

Third, our simulations showed that incentives are only useful when offered to a smaller subset of the 

population. Criteria for choosing this smaller subset of nodes might include load balancing among nodes, 

computational complexity of fetching data at the oracle, and security. Additionally, the cooperative work 

between the oracle and the nodes might be used to introduce social incentives such as reputation, that can 

track node and oracle behavior over time and provide a ratings-based system for better performance. 

Finally, our results showed that oracles can support more nodes when they are selfish and fewer nodes 

when they are fair. In particular, the number of nodes supported by a selfish oracle is four times as much 



as by a fair node. However, there might be applications where the number of nodes supported can be 

further increased by introducing delegation. Tiered, clustered or hierarchical topologies may reduce the 

burden of the oracle by delegating the intermediate smart contract generation and maintenance activities 

to cluster-heads at lower levels. Such distributed management of the oracle-node smart contract 

communication tasks can enhance the performance of the oracle by freeing up resources for efficient 

operations. 

While this work has focused exclusively for oracles in blockchain environments, the implications of this 

work can be readily extended to networks and systems where a central entity delivers services for the 

network. Examples of such applications include trusted third parties in distributed systems such as 

cyberphysical systems and IoT networks (Eom et al. 2020) and (You et al., 2018), cluster-heads in 

wireless sensor networks and robotic applications with heterogeneous nodes where some nodes are 

responsible for higher-level tasks such as aggregation and data analysis, and in real-time distributed 

systems (Mbarek et al. 2016). In these applications, the affordances of our model concerning dynamically 

evolving trust, the option to act independently of peer influence and the role of incentives can all be 

leveraged to create robust environments that can function in the presence of malicious central points of 

failure. The notion of trust is a cross-disciplinary construct, and as such, our model for commoditization 

of trust can be used in multi-agent scenarios comprising of agents with mixed levels of resources.  

CONCLUSION 

The work in this paper concerns itself with the case of a single oracle serving a blockchain according to a 

commoditized trust mechanism that considers the selfishness of the oracle, and the collective trust placed 

by the blockchain in the oracle. This framework is scalable to the level of individual trust preferences that 

affect the collective trust, and the oracle has the ability to tune its selfishness to reflect its resource-

conserving strategies. However, this framework has several limitations, as we outline below: 



Multiple oracles: The applications of distributed ledger computing in various domains necessitate cross-

domain trust and data processing. Oracles for different applications might be collocated for fetching data 

from various untrusted domains. Further, the computational resources of these oracles, the size of the 

network, load distribution and their selfishness metrics might vary. This creates a market for oracles of 

varying capabilities and blockchains for various applications to position themselves in market for trust. 

Thus, multiple directions for future work are envisioned. Oracles might adapt to a self-regulating market, 

or additional transaction models involving auctions of oracles’ services might be envisioned. 

Additionally, improved contracts fashioned for inter-oracle communication might involve factors such as 

congestion control and multiplexing to allow for improved trust supplied by the oracles. 

Hierarchy of oracles: While our framework involved a single oracle, a hierarchy of oracles organized in 

various tiers according to the level of trust required for the application might be envisioned for 

applications with differing QoS criteria. Such an architecture might have applications with highest trust 

delivery will have in the root of a hierarchy, with branches for applications with lower trust delivery. 

Alternately, the applications with similar trust requirements could be classified and processed according 

to a clustering mechanism or placed in different queues with differing time quantum per queue allocated 

according to the trust assigned for the queue.  

Security: Our framework allows for an oracle to exhibit selfishness so that it may choose to preserve its 

resources. However, additional work is required to study the security implications of an oracle that goes 

rogue and compromises the security of the network. Additional work in the direction of malicious nodes 

will help illuminate the security implications of having an oracle in the trusted position of data purveyor 

from an untrusted environment.   

In this paper, we proposed a model for studying the interplay of an oracle with a trusted blockchain and 

untrusted external environment. Our model borrowed upon constructs from social models of trust to study 

the role of selfishness and incentives in creating a dynamic framework where the blockchain can vary the 

trust placed in the oracle. The work in this paper provides multiple avenues for exploring new research 



areas in smart contracts that are created with entities such as oracles that serve as intermediaries between 

two environments with differing levels of trust. This includes fundamental questions such as network 

topology, security of data, malicious nodes and oracles and design of incentives. As distributed ledger 

applications continue to rise in popularity and acceptance, other potential areas of research include the 

design of machine learning algorithms for generating smart contracts that utilize the services of oracles in 

differing ledger platforms and applications. 
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